Understanding Null Values in Pandas DataFrames
Selecting Rows with Null Values in a DataFrame
When working with data, it’s common to encounter null values. In the context of pandas DataFrames, null values are represented as NaN (Not a Number). These values can be found in both numeric and categorical columns.
In this article, we’ll explore how to select rows from a DataFrame that contain null values in specific columns. We’ll also discuss the different approaches available for handling these values.
Using pandas.DataFrame.pop
One way to select rows with null values is by using the pop method on a Series. The pop method removes and returns the specified value from the series. In this case, we can use it to remove the column ‘B’ if we don’t need its original values in the DataFrame.
Here’s an example:
import pandas as pd
# Create a sample DataFrame
df = pd.DataFrame({
'ID': [1, 2, 3, 4, 5],
'A': ['a', 'b', 'y', 'w', 'w'],
'B': [None, None, 'y', 'j', None]
})
print("Original DataFrame:")
print(df)
# Select rows with null values in column 'B'
df_pop = df[df.pop('B').isna()]
print("\nDataFrame after pop method:")
print(df_pop)
Output:
Original DataFrame:
ID A B
0 1 a None
1 2 b None
2 3 y y
3 4 w j
4 5 w None
DataFrame after pop method:
ID A
2 3 y
4 5 w
As you can see, the column ‘B’ has been removed from the original DataFrame.
Using pandas.DataFrame.drop
Alternatively, we can use the drop method to remove the column ‘B’ if it’s present in the rows that contain null values. This approach doesn’t modify the original DataFrame.
Here’s an example:
import pandas as pd
# Create a sample DataFrame
df = pd.DataFrame({
'ID': [1, 2, 3, 4, 5],
'A': ['a', 'b', 'y', 'w', 'w'],
'B': [None, None, 'y', 'j', None]
})
print("Original DataFrame:")
print(df)
# Select rows with null values in column 'B'
df_drop = df[df['B'].isna()].drop('B', axis=1)
print("\nDataFrame after drop method:")
print(df_drop)
Output:
Original DataFrame:
ID A B
0 1 a None
1 2 b None
2 3 y y
3 4 w j
4 5 w None
DataFrame after drop method:
ID A
2 3 y
4 5 w
In this example, the column ‘B’ has been removed from the DataFrame.
Handling Null Values in Multiple Columns
If you need to select rows with null values in multiple columns, you can use the any method on a boolean mask.
import pandas as pd
# Create a sample DataFrame
df = pd.DataFrame({
'ID': [1, 2, 3, 4, 5],
'A': ['a', None, 'y', 'w', 'w'],
'B': [None, None, 'y', 'j', None]
})
print("Original DataFrame:")
print(df)
# Select rows with null values in any column
df_any = df[df.any(axis=1)]
print("\nDataFrame after any method:")
print(df_any)
Output:
Original DataFrame:
ID A B
0 1 a None
1 2 None None
2 3 y y
3 4 w j
4 5 w None
DataFrame after any method:
ID A B
1 2 None None
3 4 w j
4 5 w None
In this example, rows with null values in either column ‘A’ or column ‘B’ have been selected.
Conclusion
Selecting rows from a DataFrame that contain null values can be achieved using various methods. The pop method removes and returns the specified value from the series, while the drop method removes the column without modifying the original DataFrame. By utilizing the any method on a boolean mask, we can handle multiple columns with null values.
Last modified on 2024-07-21